Skip to main content
Link to Grants Program section
->Home > grantspgm > projects > proj00 > orn

The Impact of Turfgrass Pest Management System Techniques on Surface and Ground Water Quality 2000

print Download the entire report in pdf format

Project Leaders: A. Martin Petrovic and Zachary M. Easton, Department of Horticulture, Cornell University, Ithaca, NY 14853


The impact of various turfgrass pest management strategies (PMS) on water quality has recently become a concern for many golf course superintendents, sports facilities managers and homeowners. With water quality standards becoming increasingly stringent, management practices have had to follow suit. Uses of alternative control strategies have become increasingly important. This includes the use of biological, cultural and preventative control practices to reduce pest pressure, as well as environmental impacts. Turfgrass is, no doubt, a beneficial addition to most ecosystems, yet when mismanaged can cause harm as well. Mis-management of the turfgrass ecosystem can greatly influence the nitrogen, phosphate and pesticide levels in surface and ground water, causing problems for communities that depend on clean water for consumption as well as recreation. Aquatic ecosystems as well can be severely harmed by increased levels of nitrogen and phosphate, which can cause algal bloom, decreased dissolved oxygen levels, and eutrophication, which in turn has an impact on nearly all ecosystems. Pesticides that find their way into surface or ground water pose a problem to exposed species ranging from fish to humans. When managed correctly, turfgrass provides many positive attributes, including increased UV absorption, CO2 remediation, soil stabilization, ground and surface water filtration, and aesthetic benefits. It is our goal to test the impact of three of the most commonly implemented turfgrass pest management systems, (preventative, IPM, and organic systems) on surface and ground water quality and turfgrass performance. The results will hopefully provide answers on how to produce acceptable turfgrass quality while benefiting the environment.